
150913 1-1

Section 1
Introduction

WARNING
Incorrect programming of I/O statements could cause the system to malfunction. Follow the

instructions in this manual and check your I/O statements carefully before downloading
them to the panel.

1.1 What is I/O Application Programming?

One of the many powerful features of the 4820/21 is its built-in programming language that
allows you to create customized applications (or programs) based on users’ needs. These pro-
grams are called I/O (for input/output) applications. You can think of I/O applications as a
way to make use of 4820/21 system data (or events that occur on the 4820/21) to meet special-
ized needs of your customers. For example, a commercial customer might want an application
that would bypass a particular zone if a particular door has been accessed.

Examples of typical residential applications are: Turning on lights at specific times to make a
home seem occupied when it is vacant or turning on lights during an entry delay (the timer
needed for this application is part of the program, eliminating the need for a timing device).

1.1.1 Controlling X10 Modules

The 4820/21 can interface with X10 modules via the Model 4880 Status Output Module. This
allows you to write applications to control lights or appliances based on internal status and
key commands. For example, you could write a program that would turn lights on when some-
one enters a building. Programs that turn lights and appliances on and off are common uses of
X10 modules. (The 4820/21 supports up to 16 X10 house codes with 16 devices per house
code.)

1.1.2 Controlling 4880 Status Output Module Outputs

I/O statements are commonly used to control the outputs on the 4880. For example, you could
write an application that would cause the 4880 to output when the system arms. (See Section
4.4 for an example of this type of application.)

I/O Application Programming Manual

1-2 150913

1.2 About this Manual

The purpose of this manual is to teach you how to use the programming language. Much of
the instruction is through examples. We have tried to include examples that are applicable to
many different installations, but because there is virtually an unlimited number of applications
that could be created, we couldn’t possibly include them all. Once you learn the basics from
analyzing these examples, you should have no trouble creating your own applications.

1.2.1 For More Information

The 4820/21 I/O application programming language is a subset of a programming language
called “C”, the language that was used to write the 4820/21 control software. C is widely used
in technical and business applications. There are literally hundreds of books about C on the
market. The Waite Group’s New C Primer Plus by Mitchell Waite and and Stephen Prata
(published by SAMS, a division of Prentice Hall Computer Publishing, (1990), has become a
standard introductory book on C and is an excellent resource for beginners.

If you do read more about C (or if you are already familiar), you will see that the 4820/21 I/O
application language does not contain all features of the standard C language and uses some
features differently than they are typically used in standard C. Follow the syntax as described
in this manual when creating I/O applications.

150913 2-1

Section 2
The I/O Pro grammin g Language

The I/O programming language is made up of a set of keywords and symbols that must be
used in the correct “syntax.” Syntax is the way in which statements are constructed and orga-
nized so they can be understood by the 4820/21 panel.

2.1 Event-Driven Programming

The I/O application programming language uses a technique called event-driven program-
ming. Event-driven programming is unique from other types of programming (including the I/
O application language used with the 4724) because it does not read input and make decisions
about how to respond to that input. Instead, an event-driven program waits for notification
from the 4820/21 operating system that a particular event has occurred, then responds by gen-
erating a new event.

The events that I/O applications wait for are “packets” of information consisting of:

eventcode a number that identifies the event

partition number a number that identifies where the event occurred

parameters
(optional)

additional information about the event

I/O Application Programming Manual

2-2 150913

2.2 Simple Script Example

The group of statements that makes up an I/O application is called a script. This section of the
manual contains two diagrams annotating a simple script. The terms used in the examples are
described in greater detail in Section 2.3.

Figure 2-1 Sample script

The I/O Programming Language

150913 2-3

Figure 2-2 Annotated fragment of a simple program

I/O Application Programming Manual

2-4 150913

2.3 Keywords and Symbols

Table 2-1 is a list of all elements of the I/O application programming language. These items
are described in greater detail in the sections that follow.

2.3.1 Quick Reference Chart

Table 2-1: Keywords and Symbols

Keyword / Symbol Description Usage Example

main() This must be the first line of every I/O application. Used one time only in each script.

begin First line of all statements or groups of statements. See Section 2.3.11.

end
Last line of all statements or groups. The last word
of an I/O application must be “end.”

See Section 2.3.11.

eventcode
A four-digit number standing for an event that will
trigger an action by an I/O application. Section 5.2
lists all eventcodes.

if (eventcode == 1000)

partition
Partition number where an event occurred. Must be
included any time the genevt command word is
used. Valid range is 1-8, no leading zeros.

if (partition == 4)

param1 - param4
A parameter or additional piece of information
associated with an eventcode.

if ((eventcode == 1233) & (param1 == 2))

genevt0

Command word. Used with eventcodes that have 0
parameters. Requires a partition number. (XXXX
can be used when your application does not need to
know the partition number.)

genevt0(9999,XXXX);

genevt1

Command word. Used with eventcodes that have 1
parameter. Requires a partition number. (XXXX
can be used when your application does not need to
know the partition number.)

genevt1(9999,XXXX,param1);

genevt2

Command word. Used with eventcodes that have 2
parameters. Requires a partition number. (XXXX
can be used when your application does not need to
know the partition number.)

genevt2(9999,XXXX,param1,param2);

genevt3

Command word. Used with eventcodes that have 3
parameters. Requires a partition number. (XXXX
can be used when your application does not need to
know the partition number.)

genevt3(9999,XXXX,param1, param2,
param3);

temp1 - temp32
16-bit locations. For temporary storage of data
needed by the application while executing.

temp1 = 0;

if Beginning of a conditional statement. See Section 2.3.3.

if else Beginning of second conditional statement. See Section 2.3.3.

else
Action to be taken if conditional statement criteria
not met.

See Section 2.3.3.

The I/O Programming Language

150913 2-5

BIT1 - BIT16

Decimal value of a 16 bit “word” when one of the
bits is on. Must be entered as shown here (all capi-
tal letters). Use when you want to differentiate
between particular bits. (See Section 2.4.1 for more
information about words.)

Note: If an account is uploaded, these keywords will be
replaced with their numeric values. See Appendix A to
this manual for more information.

EXAMPLE 1:
To access Bit 4:
 if ((param1 & BIT4) == (BIT4))

EXAMPLE 2:
To access Bit 4 or Bit 5:
 if ((param1 & (BIT4 | BIT5)
 == (BIT4 | BIT5)))

XXXX

A dummy partition number. Used with genevt com-
mand when you do not care which partition the
event occurred in. Must be entered as shown here
(all capital letters).

Note: If an account is uploaded, this keyword will
be replaced with its numeric value. See Appendix A
to this manual for more information.

genevt0(9999,XXXX);

HOUSEA -
HOUSEP

Decimal value of an X10 module house number.
(There are 16 possible with names HOUSEA
through HOUSEP.) Must be entered as shown here
(all capital letters).

Use with UNIT1 - UNIT16 to access X10 devices.
See below.

Note: If an account is uploaded, these keywords
will be replaced with their numeric values. See
Appendix A to this manual for more information.

(HOUSEA + UNIT1)

UNIT1 - UNIT16

Decimal value of an X10 device number. Must be
entered as shown here (all capital letters).

Use with HOUSEA - HOUSEP (see above) to
access X10 devices. Each HOUSE_ can have up to
16 units assigned to it.

Note: If an account is uploaded, these keywords
will be replaced with their numeric values. See
Appendix A to this manual for more information.

See above.

;
A semicolon must follow all command statements
using genevt and assignment operators (equal sym-
bols).

genevt0(9999,XXXX);

temp1 = 0;

,
A comma separates multiple parameters. genevt3(9999,XXXX,param1,param2,

param3);

()
Parentheses are for grouping or separating expres-
sions.

if ((eventcode == 1233) & (param1 == 2))

/*

Begin comment. A comment is an explanation of a
statement. Words surrounded by comment markers
are not read as part of the application.

/* This is a short comment. */

/* This is a long comment. It wraps over
several lines. Make sure no statements are
embedded in your comment. */

*/ End comment. See above.

Table 2-1: Keywords and Symbols

Keyword / Symbol Description Usage Example

I/O Application Programming Manual

2-6 150913

2.3.2 Relational and Mathematical Operators

In addition to the keywords and symbols in the Quick Reference Chart, the relational and
mathematical operators shown in the table below can also be used.

The compiler evaluates relational and mathematical expressions from left to right with any-
thing in parentheses having priority. See Section 2.3.15 for an example.

Table 2-2: Operators

Operator Use

& AND operator. Use when you have two conditions that must both be true.
(Also used for ANDing two bits. See Section 2.4.2 for more information.)

| OR operator. Use when you have two conditions and only one of them must be
true. (Also used for ORing two bits. See Section 2.4.2 for more information.)

^ XOR operator. Use when have two conditions that must be different from
each other. (This is the carat character, located above the “6” on the top row of
the keyboard.)

(Also used for XORing two bits. See Section 2.4.2 for more information.)

= Assignment operator. Use when you need to assign a variable (allocate space).
Do not confuse with = = (two equal symbols, see below). Statements using
this operator must be ended with a semicolon.

= = Equality operator (two equal symbols, no space between them).
Compares two statements to see if they are equal.

!= Not equal operator.
Compares two statements to see if they are not equal.

> Greater than operator.

< Less than operator.

>= Greater than or equal to operator.

<= Less than or equal to operator.

>> Shift right operator. Use when you need to access the low byte of an event-
code. See Section 2.4.3 for more information.

<< Shift left operator. Use when you need to access the high byte of an event-
code. See Section 2.4.3 for more information.

+ Addition operator.

- Subtraction operator.

* Multiplication operator.

/ Division operator.

The I/O Programming Language

150913 2-7

2.3.3 Conditional Statement

Conditional statements always begin with the word(s) “if”, “if else”, or “else”. They tell the
4820/21 what condition to look for in order to execute the command.

Example 1: One condition statement
if (eventcode == 1000)

begin

the system will do something;

end

Example 2: Two condition statement
if (eventcode == 1000)

begin

the system will do something;

end

else if (eventcode == 1001)

begin

the system will do something else;

end

Example 3: Two condition statement with an else statement
if (eventcode == 1000)

begin

the system will do something;

end

else if (eventcode == 1001)

begin

the system will do something else;

end

else

begin

neither condition was true, the system will do this instead;

end

I/O Application Programming Manual

2-8 150913

2.3.4 Command Statement

Command statements tell the system what to do if the condition statement is true. There are
two types of command statements: genevt commands and assignment commands. See Sec-
tions 2.3.5 and 2.3.6 for more information.

2.3.5 Genevt commands

A genevt command tells the system to generate an event. There are four commands, depend-
ing on the number of parameters that w

Genevt commands require information that follows—eventcode, partition number (or dummy
partition number), any parameters—to be enclosed in parentheses. Figure 2-3 and Figure 2-4
show the form that genevt commands take.

The number of parameters used with genevt depends on how many parameters are available
for the eventcode (from Section 5 of this manual) and whether or not you want to use the
parameter.

Not all eventcodes can generate commands. Some eventcodes are for use in conditional state-
ments only. See Section 5 for more information.

Figure 2-3 Example genevt0 command

genevt0 generate an event with zero parameters

genevt1 generate an event with one parameter

genevt2 generate an event with two parameters

genevt3 generate an event with three parameters

The I/O Programming Language

150913 2-9

Figure 2-4 Example genevt2 command structure

I/O Application Programming Manual

2-10 150913

2.3.6 Assignment statement

Temporarily assigns a value to a variable. In I/O application scripts, assignment statements
are often used to set the initial value of a variable (see below) but they could have many other
uses.

if (eventcode == 1000)

begin

temp1 = 60; /* assignment statements are command statements
 so they must end with a semicolon (;) */

end

2.3.7 Eventcode

An eventcode is a number that represents an event that occurred or will occur on the system.
These events drive your I/O applications. Some eventcodes are used only to provide status
information for conditional statements. Some eventcodes can generate commands in conjunc-
tion with the genevt command. See Section 5 for more information.

2.3.8 Parameter

A parameter is an additional piece of information that provides more specific information
about an eventcode. For example, eventcode 2500 indicates that an X10 device is on. There
are two parameters associated with this eventcode, param1 indicates the device number of the
4880 where the X10 module is attached; param2 indicates the House Code and Unit Number.
An example of the form you would use is shown below.

genevt2 (2500, XXXX, 3, (HOUSEA + UNIT1));

In this example, param1 is “3” and param2 is the calculation “HOUSEA + UNIT1”.

Parameters are optional and not all eventcodes have parameters assigned to them. See
Section 5 for a list of all eventcodes and associated parameters.

The I/O Programming Language

150913 2-11

2.3.9 Comments

Commenting is an important part of an I/O application script. It tells you and anyone else who
may need to use your script how the application works. It is a good idea to write a comment
for each statement in your program. The text of your comment must begin with the special
characters “/* ” and end with the special characters “*/ ”.

Comment Example
genevt2 (2550,1,34, param1);

/* Above statement turns on 4880 outputs */

Examples of comments used in scripts appear in Section 4.

2.3.10 Case Sensitivity

The I/O programming language is case-sensitive. This means that if you use a capital letter
when a lowercase is required (or vice versa), you will receive a syntax error. Most of the time
you will want to use all lowercase for your scripts. There are a few exceptions using all upper-
case. The Quick Reference Chart (Section 2.3.1) shows all keywords in the correct case.

2.3.11 Begin / End

All command statements (and groups of statements) must begin and end. Also, the script itself
must open with begin and close with end. Syntax errors often occur from too few or too many
begin/end statements. An easy way to check is to count the number of begins and ends in a
script to make sure they match as shown in Figure 2-5.

Figure 2-5 Begin / End Syntax

I/O Application Programming Manual

2-12 150913

2.3.12 Script

Script is the name for the complete set of commands that runs an application. Each sample
application in Section 4 is a script. Some scripts have more than one function; there is only
one script per account.

2.3.13 Variables (temporary storage locations)

A variable is a temporary storage location for data that will change or needs to be checked
during execution of an application.

The I/O application programming language has several variables that can be used only for
particular types of data.

There are also 32 variables, named temp1 - temp32 that can store any data. You might use a
temp variable to, for example, keep track of how much time has elapsed in a timer application.

2.3.14 Constants

Constants are values that have been given pre-assigned names to make them easier to work
with. The data is always the same. For example, BIT8 is the predefined name of the eighth bit
of a byte, which has the value 128. XXXX, the predefined name for a dummy partition num-
ber, which has the value 15. (A dummy partition number is used with the genevt command,
which requires a partition number, when your application does not need to know the partition
number.)

Name Use For

HOUSEA - HOUSEP House Number for X10 modules

UNIT1 - UNIT16 X10 module device numbers

temp1 - temp32 Any 16-bit data

The I/O Programming Language

150913 2-13

2.3.15 Parentheses

Parentheses (parens) are necessary to separate groups of statements.

Not enough or too many parens is a common syntax error. Make sure that every open paren
has a close. One easy way to check is to count the number of open parens and the number of
close parens. You should have the same number of both, as shown in Figure 2-6.

Figure 2-6 Use of parentheses

Parentheses have the highest priority for order of operation. This means that the compiler
evaluates statements within parentheses first, starting with the innermost parentheses and
moving from left to right. Figure 2-7 provides a simple example.

Figure 2-7 Order of operations using parentheses

I/O Application Programming Manual

2-14 150913

2.4 Special Data Handling

Most eventcodes and parameters used in I/O applications are simple. You just enter the event-
code number and associated parameters in the correct syntax. In a few cases, accessing the
data you need is complicated by how that data is stored internally. Besides the eventcode, you
may need to know additional information (such as the specific bits or whether the data is
stored in the high or low byte).

This section of the manual briefly explains the simple computer math concepts you need to
know to handle special data. Section 5 of this manual tells you which eventcodes and parame-
ters require special handling.

2.4.1 Bits, bytes, words

Internally, the 4820/21 stores data in the form of bytes and, in some cases, words.

A byte is made up of 8 bits. A bit is simply a 0 or a 1. The pattern of bits determine what data
is stored in the byte. For some applications you will need to identify which bit is “on” (set to
1) or “off” (set to 0). See Section 2.4.2 for more information.

Note: If you are familiar with other programming languages, you may be used to seeing bits identified as 0-7,
instead of 1-8.

The 4820/21 uses what is a called a word to store long data. A word is two bytes, with one
byte designated as the high byte and the other as the low byte. Some I/O applications need to
know the location within the word (high byte or low byte) where the data is located. See Sec-
tion 2.4.3.

The I/O Programming Language

150913 2-15

2.4.2 Bit operations

In some cases, I/O applications control a hardware device by sending it a byte of data. Each
bit of the byte has a specific purpose. An I/O script can make use of the individual bits to acti-
vate commands. In these cases, your applications need to tell which bits are relevant.

An example is the 4880. As the diagram below shows, each pin of Connector P2 on the 4880
has a specific use depending on if the bit is on (set to “1”) or off (set to “0”).

As the diagram below shows, bits have numeric values. The value of a byte is the total of the
bits that are “on” (set to 1). You can use mathematical calculations and comparisons to deter-
mine if bits are on or off.

I/O Application Programming Manual

2-16 150913

Some typical uses of bit operations are described here. Section 5 of this manual tells you if the
parameter you want work with requires bit operations.

BIT Operator Usage

&

(AND)

In addition to its use as a logical operator as described in Section 2.3.2, AND
is often used to turn all bits off that are currently on.

|

(OR)

In addition to its use as a logical operator as described in Section 2.3.2, OR is
often used to turn a particular bit on without changing the other bits.

^

(XOR)

In addition to its use as a logical operator as described in Section 2.3.2, XOR
is often used to toggle bits (turn on if off, or turn off if on).

+ Adding the value of bits is often used to turn them on (similar to ORing).

<< Shift left (<<) operator. Moves bits to the high byte. See Section 2.4.3 for
more information.

>> Shift right (>>) operator. Moves bits to the low byte. See Section 2.4.3 for
more information.

The I/O Programming Language

150913 2-17

The chart below is what is known as a truth table. It shows all possible results of bit calcula-
tions using XOR, OR, AND.

EXAMPLE:

When Input A and Input B are both 0, ANDing them results in 0.
When Input A is 0 and Input B is 1, ANDing them results in 0.
When Input A is 1 and Input B is 0, ANDing them results in 0.
When Input A and Input B are both 0, ANDing them results in 1.

Input Result

“A” “B” AND OR XOR

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

I/O Application Programming Manual

2-18 150913

2.4.3 Accessing high or low bytes

The 4880 provides an example of why you may need to access the high or low byte of a word.
Eventcodes 2555 and 2556 are for controlling more than one output at a time. When you use
these codes, you must identify a specific byte to show which group of outputs the ones you
want to control belong to.

The I/O Programming Language

150913 2-19

2.5 Creating Aux Menu Items

Through I/O programming you can your create own menu items that will activate when the
user presses a numeric key on the touchpad. When the key is pressed, the touchpad will dis-
play the message you created and the system will perform the action associated with the key.

You can create up to 10 Aux Menu items, corresponding to keys - . Each of these menu items
is associated with text that displays on the LCD when the key is pressed. The messages can be
up to 16 characters in length (any character is acceptable).

The special eventcodes are shown below. (See also example on next page.)

9000 User pressed touchpad key .

9001 User pressed touchpad key .

9002 User pressed touchpad key .

9003 User pressed touchpad key .

9004 User pressed touchpad key .

9005 User pressed touchpad key .

9006 User pressed touchpad key .

9007 User pressed touchpad key .

9008 User pressed touchpad key .

9009 User pressed touchpad key .

0

1

2

3

4

5

6

7

8

9

I/O Application Programming Manual

2-20 150913

EXAMPLE APPLICATION

Suppose you want to create an I/O script that turns on a light attached to an X10 module when
the user presses . You also want the touchpad to display “LIGHT ON” when is pressed. Here
are the steps.

1. Create a I/O script similar to the one shown in the partial script below.

...

if (eventcode == 9001) /* if touchpad key 1 is pressed
*/

begin

genevt2(2500,XXXX,3, (HOUSEA + UNIT1)) /*turn on X10 device
HOUSE1,UNIT1

 located on 4880 Device ID
3 */

end

...

2. Create the Aux Menu text that will display on the touchpad LCD when the menu item is
activated. Use the Aux Menu option to enter the text “LIGHT ON”. Aux Menu text dis-
plays can be up to 16-characters long; any characters can be used. The Aux Menu option is
available from the General System Options screen of the System SubMenu. (See the 5580
manual if you need more information.)

2.5.1 Activating Aux Menu Items

Users activate Aux Menu items by entering [*Code] to activate the Aux Menus, then

pressing - as needed for their specific applications.

Note: *Normal User and higher

2 ENTR

0 9

150913 3-1

Section 3
Usin g the Script Editor

I/O application scripts are created through the 5580 Upload-Download Software and are
downloaded to the panel.

3.1 Entering the Programmable I/O Menu

To access the text editor that allows you to create application scripts, follow these steps.

1. From the 5580 Main Menu, select Accounts.

2. Choose an account to Edit or Create a new account.

3. At the System SubMenu, select Programmable IO. A screen for creating a script displays.
Working with this screen is similar to using a text editor or simple word processor. Section
3.2 describes the editing keys that are available. The default script that displays depends
on the template that was used to create the account. If the “System Template” was used, a
script that controls bell outputs according to UL requirements will be the default. See Sec-
tion 3.1.1 for more information.

3.1.1 UL Required Script for Controlling Bells

If you are installing a UL system, the script for controlling bell ouputs must be part of the
account. This script is automatically included for any accounts that are created using the Sys-
tem Template. If you are installing a UL system and you need additional statements, you can
add them to the end of the UL script as shown in Figure 3-1.

Figure 3-1 Modifying the UL required script

I/O Application Programming Manual

3-2 150913

3.2 Objects on the Script Editing Screen

Figure 3-2 shows the objects that appear on the script editing screen. Editing keys are
described in Section 3.3.

Figure 3-2 Objects on a Script Editing Screen

Using the Script Editor

150913 3-3

3.3 Editing Keys

The keys shown in Table 3-1 are available on the script editing screen.

Table 3-1: Editing Keys

Menu Keys

Write (save) the script.

Compile (syntax check).

Exit the editing session.

Undo last change.

Highlighting and Editing Keys

 or
Selects previous or next character.

 or
Selects previous or next line.

Select the previous screen.

Select the next screen.

Select from cursor position to the beginning of the line.

Delete the current line.

Cut the selected text

Copy to the clipboard (see Section 3.3.1 for more information).

Paste from the clipboard (see Section 3.3.1 for more information).

Select from cursor position to the end of the line.

Cursor Movement Keys

Move through the screen in the direction indicated.

Move to the left by 8 (tab positions cannot be changed).

Move to the beginning of the script.

Move to the end of the script.

 or
Move to the previous or next word.

ALT W

ALT C

ALT E

ALT U

SHIFT ← →

SHIFT ↑ ↓

SHIFT PgUp

SHIFT PgDn

SHIFT Home

CTRL Y

SHIFT Delete

CTRL Ins

SHIFT Ins

SHIFT End

← → ↑ ↓

Tab

CTRL PgUp

CTRL PgDn

CTRL ← →

I/O Application Programming Manual

3-4 150913

3.3.1 Copying to the Clipboard

The script editing screen has a “clipboard” (memory available for you to store text tempo-
rarily, similar to most Windows applications). You can use it to copy a script from one
account or template into another.

1. When you are in the script that you want to copy from, highlight the text you want to copy.

2. Press . The text is now on the clipboard.

3. Open the script that you want to copy to.

4. Press . A copy of the text should now appear in the script editing screen you are
currently working with.

(You can also copy text within the same script. The steps are the same except that at Step 3
just move to the location you want to copy to.)

3.4 Writing (Saving) the Script

Press to save the script at any time. (No message displays on the screen, but your script
will be saved.)

3.5 Compiling the Script

When you have entered and saved the script, press to compile (run the syntax check).
If you have not written (or saved) the script before you select Compile, you will be prompted
to do so. You cannot compile a script that has not been saved.

If your script does not contain any syntax errors, the message “Syntax checks OK!” displays.
Your application should be able to run.

3.5.1 Syntax Errors

The program will not be able to compile if a syntax error exists. A Syntax Error message box
displays, showing you the line number where the error occurred and a brief description of the
error. Syntax messages are not always meaningful (because the compiler is attempting to
understand your program, including any typing errors you may have made). The vast majority
of syntax errors are typos, spelling errors, missing punctuation, and so on. Figure 3-3 shows
examples of syntax errors and what caused them.

The compiler stops immediately and displays the syntax error message as soon as it encoun-
ters an error. If your script has more than one syntax error, you may need to compile several
times.

CTRL Ins

SHIFT Ins

ALT W

ALT C

Using the Script Editor

150913 3-5

Figure 3-3 Sample Syntax Errors

I/O Application Programming Manual

3-6 150913

I/O Application Programming Manual

4-8 150913

Example Programs

150913 4-7

4.6 Timer Routine

The script below is a timer routine that can be customized for many different applications.

main()

begin

if (eventcode == ?????) /* select event that
begins timer */

begin

temp1 = 60; /* begin timer, duration
is 60 seconds in this
example */

genevt2(2550,XXXX,3,1); /* turn on first output
of device #3 */

end

if ((eventcode == 1200) & (temp1 != 0)) /* check timer once per
second until zero */

begin

temp1 = (temp1 - 1); /* count down timer by 1 */

if (temp1 == 0) /* if timer is equal to
zero */

begin

genevt2(2551,XXXX,3,1); /* turn off first output
of device #3 */

end

end

end /* end of script */

I/O Application Programming Manual

4-6 150913

4.5.2 Time Schedule Triggers Vacation Start

In this sample script, Time Schedule 2 is the schedule for the vacation. Time Schedule 1 is the
“night time” schedule, the hours that the user wants house lighting on. This application is
somewhat simpler than the one described in Section 4.5.1 with the possible disadvantage that
the user does not trigger the vacation.

main()

begin

if ((eventcode == 1233) & (param1 == 2)) /* checks if vacation
started */

begin

temp1 = 1; /* if yes, turn flag on */

end

if ((eventcode == 1234) & (param1 == 2)) /* checks if vacation
ended */

begin

temp1 = 0; /* if yes, turn flag off
*/

genevt2(2501,XXXX,3, (HOUSEA + UNIT1)); /* turn X10 #1 off

end

if (((eventcode == 1233) & (param1 == 1)) & (temp1 == 1))

/* if vacation is active
and it’s night time,
turn X10 #1 on */

begin

genevt2(2500,XXXX,3, (HOUSEA + UNIT1));

end

if (((eventcode == 1234) & (param1 == 1) & temp1 == 0))/* if vacation
is inactive
or it’s day
time, turn
X10 #1 off*/

begin

genevt2(2501,XXXX,3, (HOUSEA + UNIT1));

end

end /* end of script */

Example Programs

150913 4-5

4.5 Vacation Lights Programs

The two scripts in this section are for making a home seem occupied during a vacation.

4.5.1 Phantom Zone Bypass Triggers Vacation Start

In this sample script, Zone 20 is configured as a “phantom zone” (no wires are connected to
the hardware point assigned to Zone 20). Through programming, the zone is configured so
that it will always be ready whether the system is armed or disarmed. The bypass state of the
zone is used as a trigger. When the user bypasses Zone 20, this application will execute. Time
Schedule 1 is the “night time” schedule, the hours that the user wants house lighting on. When
the user returns from vacation, unbypassing Zone 20 triggers the end of the vacation. The
lights will no longer turn on and off automatically. The hardware device number for the 4880
is 3.

main()

begin /* start of script */

if ((eventcode >= 501) &

(eventcode <= 518) & (param1 == 20)) /* checks to see if

 zone 20 is bypassed */

begin

temp1 = 1; /* set “vacation mode”
flag */

end

if ((eventcode >= 552) &

(eventcode <= 569) & (param1 == 20)) /* if zone 20 is
unbypassed */

begin

temp1 = 0; /* clear vacation mode
flag */

genevt2(2501,XXXX,3,(HOUSEA + UNIT1)); /* turn X10 #1 off */

end

if (((eventcode == 1233) & (param1 == 1)) & (temp1 == 1))

/* if time schedule
active and vacation
mode flag on turn on
X10 #1 */

begin

genevt2(2500,XXXX,3, (HOUSEA + UNIT1));

end

if (((eventcode == 1234) & (param1 == 1)) | (temp1 == 0))

/* if either the time
schedule is not valid
or vacation mode is
turned off, turn off
X10 #1 */

begin

genevt2(2501,XXXX,3,(HOUSEA + UNIT1));

end

end /* end of script */

I/O Application Programming Manual

4-4 150913

4.4 Turn X10 Module On and Off

Note: X10 modules are not UL listed.

This script turns an X10 device on and off per a time schedule. This sample script assumes the
following:

HOUSEA is defined as the house number of the X10 device
UNIT1 is defined as location of the X10 device
Time schedule that makes the device become active is defined as number 10
main()

begin /* start of script */

if ((eventcode == 1233) & (param1 == 10)) /* time schedule 10 is
active */

begin

genevt2(2500,XXXX,3, (HOUSEA + UNIT1)); /* command to turn
device on */

end

if ((eventcode == 1234) & (param1 == 10))

begin

genevt2(2501,XXXX,3, (HOUSEA + UNIT1));/* command to turn
device off */

end

end /* end of script */

Example Programs

150913 4-3

4.3 Arm/Disarm by Area

To use the example script below, you would need to have a 4880 Status Output module
attached to the system. The script turns 4880 outputs on as individual areas are armed and dis-
armed (for example, 4880, Output 1 corresponds to Area 1 being armed).

main ()

begin /* beginning of script */

if (eventcode == 1032) /* if area arm event
occurs*/

begin /* beginning of
statement(s) */

genevt2 (2550,XXXX,34, param1); /* turn on the appropriate
output when areas arm */

end /* end of statement */

if (eventcode == 1038) /* if area disarm event occurs */

begin /* beginning of statement(s) */

genevt2 (2551,XXXX,34, param1);/* turn off the appropriate
output when areas disarm */

end /* end of statement */

end /* end of script */

I/O Application Programming Manual

4-2 150913

4.2 Separate Sounding Device Outputs Between
Partitions

In the sample script below, a burglary alarm condition in Partition 2 outputs on P1-8 which
activates a sounding device attached to Output 20. The sounding device is attached to a Model
4880 Status Output Module.

This sample script assumes the following that Device 3 is the device ID for the 4880.

main ()

begin /* beginning of script */

if ((eventcode == 24) & (partition == 2))/* 24 is code for burg
alarm */

begin

genevt2(2550,XXXX,3,20); /* Turn on Output 20 on
Device 3 */

end

if ((eventcode == 224) & (partition == 2)) /* 224 is code for burg
alarm restored*/

begin

genevt2(2551,XXXX,3,20); /* Turn off Output 20
 on Device 3 */

end

end /* end of script */

150913 4-1

Section 4
Example Pro grams

This section of the manual contains annotated example programs. You may be able to use
some of the example programs exactly as they are. Others you can use as models for your own
applications.

4.1 Controlling Bell Output Via the Auxiliary Relay

This application causes bell sounds to occur in alarm conditions. The bell will follow the bell
cadence option for fire and be on steady for any other type of alarm. Shutdown will occur, if
programmed.

This application must be used in UL installations. When you create a new account using
the System Template, this script will automatically be included in the account. See the Model
5580 Download Software Installation and Operation Manual (P/N 150925) for more informa-
tion.

main()

/* This script causes the auxiliary relay to follow the 4884 bell output

so that an unsupervised bell can be connected to the panel. */

begin /* start of script */

if (eventcode == 1505) /* 4884 bell outputon */

begin

genevt0(1510,XXXX); /* turn on aux relay */

end

if (eventcode == 1507) /* 4884 bell output off */

begin

genevt0(1511,XXXX); /* turn off aux relay*/

end

end

150913 5-1

Section 5
Event Tables

The following sections are tables of eventcodes and parameters used in I/O application state-
ments. Eventcodes are numbers that represent a system event; parameters are optional pieces
of additional information associated with the event.

• Column 1 is a description of the event.

• Column 2 is the eventcode.

• Column 3 lists parameters associated with the event.

• Column 4 tells if the event can receive and/or generate events. Events listed as “receive
only” can be used in conditional statements but cannot be used with the genevt command
to generate new events. Events listed as “receive and generate” can be used in conditional
statements and with the genevt command to generate new events. Events listed as “gener-
ate only” are not used in conditional statements; they are used only with the genevt com-
mand to generate new events.

5.1 Accessing Area Bit Masks

Parameters that store information about area where an event occurred, require use of bit mask-
ing to determine the area number. The bit mask is a mathematical operation that can be used to
calculate whether bits are on or off.

Table 5-1: Bit Mask Values

Area # Value

1 1

2 2

3 4

4 8

5 16

6 32

7 64

8 128

I/O Application Programming Manual

5-2 150913

5.2 Zone Events

Most zone events require a zone type code. Zone type codes are listed in Table 5-3 (next
page).

Table 5-2: Zone Events

Event Description Eventcode Parameters Receive/Generate

Zone alarm 20 + zone type code param1 = Zone number
param4 = Area bit mask

Receive only

Zone trouble 70 + zone type code param1 = Zone number
param4 = Area bit mask

Receive only

Zone not ready 120 + zone type code param1 = Zone number
param4 - Area bit mask

Receive only

Zone ready 170 + zone type code param1 = Zone number
param4 - Area bit mask

Receive only

Zone alarm restored 220 + zone type code param1 = Zone number
param4 - Area bit mask

Receive only

Zone trouble restored 270 + zone type code param1 = Zone number
param4 - Area bit mask

Receive only

Zone cross alarm alert 320 + zone type code param1 = Zone number
param4 - Area bit mask

Receive only

Bypass zone 500 param1 = Zone number
param2 = User ID

Receive and Generate

Zone bypassed 501 + zone type code param1 = Zone number
param2 = User ID
param3 = Area bit mask

Receive only

Unbypass zone 551 param1 = Zone number
param2 = User ID

Receive and Generate

Zone Unbypassed 552 + zone type code param1 = Zone number
param2 = User ID
param3 = Area bit mask

Receive only

Event Tables

150913 5-3

5.2.1 Zone Event Type Codes

Section 5.2 lists eventcodes for zone events. In some cases, a code indicating type of alarm is
used with the eventcode. Table 5-3 lists these codes.

EXAMPLE :

Eventcode 24 (actually eventcode 20 + zone type code 4) means that a burglary alarm has
occurred. This is because:

20 = Eventcode for a zone alarm (from Section 5.2).
 4 = Zone type code for burglary (from Table 5-3).

Table 5-3: Zone Types and Their Code

Zone Type Code

Fire 0

Holdup 1

Emergency 2

Panic 3

Burglary 4

Tamper 5

Gas 6

Undefined 7

Water 8

Heat 9

Cold 10

Sprinkler 11

Doorbell 1 12

Doorbell 2 13

Key Arming Input 14

[Reserved, do not use.] 15

Door Monitor 16

Fire Contact 17

Egress Input 18

I/O Application Programming Manual

5-4 150913

5.3 Chime or Doorbell State Change Events

Parameter: param1 = Zone number

5.4 Duress Event

Parameter: param1 = Zone number assigned to duress code

Event Description Eventcode Parameters Receive/Generate

Chime zone not ready 653 param1 = Zone number Receive only

Chime zone ready 654 param1 = Zone number Receive only

Doorbell1 zone changed 655 param1 = Zone number Receive only

Doorbell2 zone changed 656 param1 = Zone number Receive only

Event Description Eventcode Parameters Receive/Generate

Duress trigger event has
occurred

657 param1 = zone number
assigned to duress code

Receive only

Event Tables

150913 5-5

5.5 Arm Request Events

Table 5-4: Arm Request Events

Event Description Eventcode Parameters Receive/Generate

Reset alarms in areas 1000 param1 = Area bit mask
param2 = User ID (if applicable)

Receive and Generate

Auto arm areas 1001 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Manual arm areas 1002 param1 = Area bit mask
param2 = User ID (if applicable)

Receive and Generate

Exception arm areas 1003 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Auto force arm areas 1004 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Manual force arm areas 1005 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Exception force arm areas 1006 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Auto disarm areas 1007 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Manual disarm areas 1008 param1 = Area bit mask
param2 = User ID (if applicable)

Receive and Generate

Exception disarm areas 1009 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Manual disarm areas and
reset alarms

1011 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Exception disarm areas and
reset alarms

1012 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Activate interior 1 in areas 1013 param1 = Area bit mask
param2 = User ID (if applicable)

Receive and Generate

Activate interior 2 in areas 1014 param1 = Area bit mask
param2 = User ID (if applicable)

Receive and Generate

Deactivate interior 1 in
areas

1015 param1 = Area bit mask
param2 = User ID (if applicable)

Receive and Generate

Deactivate interior 2 in
areas

1016 param1 = Area bit mask
param2 = User ID (if applicable)

Receive and Generate

I/O Application Programming Manual

5-6 150913

5.6 Arm Acknowledge Events

These events are generated after the request has been completed.
Table 5-5: Arm Acknowledge Events

Event Description Eventcode Parameters Receive/Generate

Alarms have been reset 1030 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Area auto armed 1031 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Area manually armed 1032 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Area exception armed 1033 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Area auto force armed 1034 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Area manual force armed 1035 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Area exception force armed 1036 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Area auto disarmed 1037 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Area manually disarmed 1038 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Area exception disarmed 1039 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Area auto disarmed and
alarms reset

1040 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Area manually disarmed
and alarms reset

1041 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Area exception disarmed
and alarms reset

1042 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Interior 1 activated 1043 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Interior 2 activated 1045 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Interior 1 deactivated 1047 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Interior 2 deactivated 1049 param1 = Area number (1-8)
param2 = User ID (if applicable)

Receive only

Armed report acknowledged

(This event occurs only if
the “Bell After Closing
Report Acked” option has
been selected and the sys-
tem successfully reports a
closing event.)

1050 param1 = Area number (1-8)
param2 = User ID (if applicable)

Receive only

Event Tables

150913 5-7

5.7 Area Status Events

Table 5-6: Area Status Events

Event Description Eventcode Parameters Receive/Generate

Make areas instant 1060 param1 = Area bit mask
param2 = User ID (if applicable)

Receive and Generate

Area made instant 1061 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Make areas delayed (not
instant)

1062 param1 = Area bit mask
param2 = User ID (if applicable)

Receive and Generate

Area made delayed (not
instant)

1063 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Activate chime in areas 1064 param1 = Area bit mask
param2 = User ID (if applicable)

Receive and Generate

Chime activated 1065 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Deactivate chime in areas 1066 param1 = Area bit mask
param2 = User ID (if applicable)

Receive and Generate

Chime deactivated 1067 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Clear alarm memory in
areas

1068 param1 = Area bit mask
param2 = User ID (if applicable)

Receive and Generate

Alarm memory cleared 1069 param1 = Area bit mask
param2 = User ID (if applicable)

Receive only

Silence areas 1070 param1 = Area bit mask
param2 = User ID (if applicable)

Receive and Generate

I/O Application Programming Manual

5-8 150913

5.8 Timer Events

5.9 Late to Close/Open Events

Table 5-7: Timer Events

Event Description Eventcode Parameters Receive/Generate

Entry delay timer expired 1080 param1 = Area bit mask Receive only

Exit delay timer expired 1081 param1 = Area bit mask Receive only

Swinger bypass timer
expired

1083 No parameters Receive only

Report delay timer expired 1084 param1 = Area bit mask Receive only

Alarm restore timer expired 1085 param1 = Area bit mask Receive only

Auto Arm Timer Expired
Event

1086 param1 = Area bit mask
param2 = Timer mode
 0 = auto arm delay time request
 1 = power-up arm timer request

Receive only

Entry and/or exit delay
timer changed event

1093 param1 = Entry/exit delay timer
changed
 BIT1 on = Entry delay timer
 changed
 BIT2 on = Exit delay timer
 changed

Receive only

Auto arm ten second tic 1094 No parameters Receive only

Set auto arm delay time 1095 param1 = Area number in bits
(See Section 2.4.2 for more
information.)

param2 = timer value (0-255
minutes)

param3 = timer mode
 0 = auto arm delay time
requested
 1 = power-up arm timer
requested

Receive only

Table 5-8: Late to Close/Open Events

Event Description Eventcode Parameters Receive/Generate

Late to close 1091 param1 = Area number (1-8) Receive only

Late to open 1092 param1 = Area number (1-8) Receive only

Event Tables

150913 5-9

5.10 System Events

System-wide events that are not related to a specific partition, zone, or area.

Table 5-9: System Events

Event Description Eventcode Parameters
Receive/
Generate

One second tic 1200 param1 = Hour*256 + minute Receive only

System power up 1202 No parameters Receive only

Expander trouble 1203 param1 = Device ID (low byte).
See Note below.

Receive only

Expander trouble restore 1204 param1 = Device ID (low byte)
See Note below.

Receive only

Note: For eventcodes 1203 and 1204, you need to access only the low byte of the word (high byte contains data
that is not used in an application). The expression (param1 & 255) masks off the high byte.

EXAMPLE: if ((eventcode == 1203) & ((param1 & 255) == 3)

Event memory cleared 1205 No parameters Receive only

AC trouble 1206 No parameters Receive only

AC restoral 1207 No parameters Receive only

Power supply trouble 1208 param1 = Power type

0 = smoke power
1 = fire bell (4884), currently not
available

2 = auxiliary power

Receive only

Power supply restored 1209 param1 = Power type

0 = smoke power
1 = fire bell (4884), currently not
available

2 = auxiliary power

Receive only

System battery restoral 1210 No parameters Receive only

System battery trouble 1211 No parameters Receive only

Log threshold 1212 No parameters Receive only

Log overflow 1213 No parameters Receive only

Local program begin 1214 No parameters Receive only

Local program success 1215 No parameters Receive only

Local program fail 1216 No parameters Receive only

Remote program begin 1217 No parameters Receive only

Remote program success 1218 No parameters Receive only

Remote program fail 1219 No parameters Receive only

Listen in ended 1220 No parameters Receive only

I/O Application Programming Manual

5-10 150913

5.11 Time Schedule Events

Listen in begin 1221 No parameters Receive only

Phone line trouble 1222 param1 = line# (1 or 2) Receive only

Phone line restoral 1223 param1 = line# (1 or 2) Receive only

Automatic test 1225 param1 = account priority level (1-
255)

Receive and
Generate

Manual test 1226 param1 = user ID Receive and
Generate

Test end 1227 No parameters Receive only

Test start 1228 No parameters Receive only

Service required 1232 No parameters Receive and
Generate

User code tamper 1280 No parameters Receive only

Date changed 1281 param1 = User ID Receive only

Time changed 1283 param1 = User ID Receive only

Date tic 1400 param1 = Year*256+month
Year = Current year-1900
Month = 1 -12

Receive only

User code changed 1284 param1 = User ID Receive only

User code deleted 1285 param1 = User ID Receive only

User code added 1286 param1 = User ID Receive only

Printer out of paper trouble 1300 param1 = Device number Receive only

Printer out of paper trouble
restore

1301 param1 = Device number Receive only

Printer offline trouble 1302 param1 = Device number Receive only

Printer offline trouble
restore

1303 param1 = Device number Receive only

Table 5-10: Time Schedule Events

Event Description Eventcode Parameters Receive/Generate

Schedule start 1233 param1 = Number of time sched-
ule that changed

Receive only

Schedule end 1234 param1 = Number of time sched-
ule that changed

Receive only

Table 5-9: System Events

Event Description Eventcode Parameters
Receive/
Generate

Event Tables

150913 5-11

5.12 Door Access Events

5.13 Audible Alert Events

These events indicate if audible alarm signals have been turned on or off.

Table 5-11: Door Access Events

Event Description Eventcode Parameters Receive/Generate

Door access inhibited 1260 param1 = Door number
param2 = User ID (if applicable)

Receive only

Door access enabled 1261 param1 = Door number
param2 = User ID (if applicable)

Receive only

Door held open 1263 param1 = Door number Receive only

Door restoral 1264 param1 = Door number Receive only

Door access granted 1265 param1 = Door number
param2 = User ID (if applicable)

Receive only

Door access denied 1266 param1 = Door number
param2 = User ID (if applicable)

Receive only

Table 5-12: Audible Alert Events

Event Description Eventcode Parameters Receive/Generate

Internal and external
speaker sound turned on

1309 param1 = Eventcode from the
alarm event, indicates the type of
alarm that occurred.

Receive only

Internal and external
speaker sound turned off

1310 param1 = Eventcode from the
alarm event, indicates the type of
alarm that occurred.

Receive only

Internal speaker alarm
sound turned on

1311 param1 = Eventcode from the
alarm event, indicates the type of
alarm that occurred.

Receive only

Internal speaker alarm
sound turned off

1312 param1 = Eventcode from the
alarm event, indicates the type of
alarm that occurred.

Receive only

Speaker trouble sound
turned on

1313 No parameters Receive only

Speaker trouble sound
turned off

1314 No parameters Receive only

Cross alarm alert tone
turned on

1315 No parameters Receive only

Cross alarm alert tone
turned off

1316 No parameters Receive only

I/O Application Programming Manual

5-12 150913

5.14 Dialer Report Events

These events are generated by the dialer after it receives acknowledgment for reported events
from the central station.

Table 5-13: Dialer Reports Events

Event Description Eventcode Parameters Receive/Generate

Report acknowledged 1330 param1 = Eventcode that was
reported.

Receive only

Report failed 1331 param1 = Eventcode that was
reported.

Receive only

Dialer reset requested 1332 No parameters Receive only

Dialer has been reset 1333 No parameters Receive only

Date tic 1400 param1 = Year*256+month

Year = Current year-1900
Month = 1 -12

Receive only

Account trouble, dialer
failed to report to an
account.

1410 param1 = Account priority level
(1-255)

Receive only

Account trouble restore 1411 param1 = Account priority level
(1-255)

Receive only

Event Tables

150913 5-13

5.15 System Command Events

These events are used to control system resources. No parameters associated with these
events.

Table 5-14: System Command Events

Description Eventcode Receive/Generate

Request to turn off smoke
power

1500 Receive and Generate

Smoke power turned off
(acknowledgment)

1501 Receive only

Request to turn on smoke
power

1502 Receive and Generate

Smoke power turned on
(acknowledgment)

1503 Receive only

4884 bell output on
(acknowledgment)

1505 Receive only

4884 bell output off
(acknowledgment)

1507 Receive only

Request to enable reporting 1508 Receive and Generate

Request to disable reporting 1509 Receive and Generate

Request to turn on the auxil-
iary relay

1510 Receive and Generate

Request to turn off the aux-
iliary relay

1511 Receive and Generate

Auxiliary relay turned on
(acknowledgment)

1512 Receive only

Auxiliary relay turn off
(acknowledgment)

1513 Receive only

I/O Application Programming Manual

5-14 150913

5.16 X10 Control Events

Codes for controlling the X10 devices that are attached to the system.

Note: param2 = House Code and Unit Number
(HOUSEA through HOUSEP and UNIT1 through UNIT16)

If you need to access both House Number and Unit Number, add them together; param2 will be the calcu-
lation, for example, (HOUSEA + UNIT1).

Table 5-15: X10 Control Events

Description Eventcode Parameters Receive/Generate

X 10 on 2500 param1 = Device ID number of
4880 where X10 module is located.

param2 = House Code and Unit
Number
(See Note below.)

Generate only

X 10 off 2501 param1 = Device ID number of
4880 where X10 module is located.

param2 = House Code and Unit
Number
(See Note below.)

Generate only

X 10 all lights on 2502 param1 = Device ID number of
4880 where X10 module is located.

Generate only

X 10 all lights off 2503 param1 = Device ID number of
4880 where X10 module is located.

Generate only

X 10 all off 2504 param1 = Device ID number of
4880 where X10 module is located.

Generate only

X 10 dim 2505 param1 = Device ID number of
4880 where X10 module is located.

param2 = House Code and Unit
Number
(See Note below.)

Generate only

X 10 bright 2506 param1 = Device ID number of
4880 where X10 module is located.

param2 = House Code and Unit
Number
(See Note below.)

Generate only

Event Tables

150913 5-15

5.17 Output Control Events

Eventcodes for controlling system voltage outputs and relays on 4880 expanders and 4860C
touchpad devices.

Table 5-16: Output Control Events

Event Description Eventcode Parameters Receive/Generate

Turn output on 2550 param1 = Device ID number (required for
all events)
param2 = Output number, 1-20 for the
4880, not needed for the 4860C

Generate only

Turn output off 2551 param1 = Device ID number (required for
all events)
param2 = Output number, 1-20 for the
4880, not needed for the 4860C

Generate only

Turn all outputs off
(This command turns off all
outputs. For example, if the
device is a 4880 and outputs
1-20 are all used, they will
all turn off.)

2552 param1 = Device ID Generate only

Turn all outputs on
(This command turns on all
outputs. For example, if the
device is a 4880 and outputs
1-20 are all used, they will
all turn on.)

2553 param1 = Device ID Generate only

Turn more than one output
on
(This command turns on
specified outputs from a
group of outputs.)

2555 param1 = Device ID
param2 = Location of the output

See Section 2.4.3 for more information
about this eventcode.

Generate only

Turn more than one output
off
(This command turns off
specified outputs from a
group of outputs.)

2556 param1 = Device ID
param2 = Location of the output

See Section 2.4.3 for more information
about this eventcode.

Generate only

I/O Application Programming Manual

5-16 150913

5.18 Touchpad Events

The following events indicate that user has pressed keys 0-9 on the touchpad while using the
Aux Menu. See Section 2.5 for more information.

Table 5-17: Touchpad Events

Description Eventcode Receive/Generate

User pressed touchpad key
9000 Receive only

User pressed touchpad key
9001 Receive only

User pressed touchpad key
9002 Receive only

User pressed touchpad key
9003 Receive only

User pressed touchpad key
9004 Receive only

User pressed touchpad key
9005 Receive only

User pressed touchpad key
9006 Receive only

User pressed touchpad key
9007 Receive only

User pressed touchpad key
9008 Receive only

User pressed touchpad key
9009 Receive only

0

1

2

3

4

5

6

7

8

9

150913 I

Appendix A
Decompiled Data

When an account that contains an I/O script is uploaded, decompiling takes place. This means
that name constants (numbers that have been assigned meaningful names, for example, BIT_,
HOUSE_, and UNIT_) will be converted to numbers. Table A-1 on the next page lists the
numeric values of constants that will be affected by decompiling.

Besides the conversion of some constants to numeric values, the decompiling process also dis-
cards any comments that were part of a script.

The diagram below shows “before and after” versions of a decompiled script.

IMPORTANT :

Silent Knight recommends that you always maintain current backups of all I/O scripts. If an
account containing a script is uploaded, you can use the backup to replace the decompiled ver-
sion. Decompiling only occurs to accounts that have been uploaded. If you never upload an
account, you will never need to replace the original version of a script.

Decompiling does not affect operation of an I/O application. Replacing a decompiled script
with its original version is never necessary. You simply may find it easier to use the script in
its original form.

I/O Application Programming Manual

II 150913

Table A-1: Numeric Values of named Constants

Variable
Name

Numeric
Value

Variable
Name

Numeric
Value

BIT1 1 BIT9 256

BIT2 2 BIT10 512

BIT3 4 BIT11 1024

BIT4 8 BIT12 2048

BIT5 16 BIT13 4096

BIT6 32 BIT14 8192

BIT7 64 BIT15 16384

BIT8 128 BIT16 32768

HOUSEA 96 UNIT1 6

HOUSEB 224 UNIT2 14

HOUSEC 32 UNIT3 2

HOUSED 160 UNIT4 10

HOUSEE 16 UNIT5 1

HOUSEF 144 UNIT6 9

HOUSEG 80 UNIT7 5

HOUSEH 208 UNIT8 13

HOUSEI 112 UNIT9 7

HOUSEJ 240 UNIT10 15

HOUSEK 48 UNIT11 3

HOUSEL 176 UNIT12 11

HOUSEM 0 UNIT13 0

HOUSEN 128 UNIT14 8

HOUSEO 64 UNIT15 4

HOUSEP 192 UNIT16 12

XXXX 15

150913 III

Appendix B
Application Size

I/O applications are limited to 500 bytes. If you create an application that is too large, it will
not compile. The error message “Application too large” will display.

When you are creating an application, compile frequently. If you receive the “Application too
large” error message and the previous version compiled successfully, you will know that the
new items you added are what caused the application to become too large.

If you have created a too-large application that you cannot shorten, contact Silent Knight
Technical Support. Technical Support staff may be able to help you determine how to make
your application more concise.

The following chart shows the numer of bytes each element of an I/O statement us

Figure B-1 Sample command statement size

Table B-1: Bytes Per Statement Type

I/O Statement Element Uses

genevt command (genevt0 - genevt3) 2 bytes

temp variables (temp1 - temp16) 2 bytes

constant (a number that does not change or a name that
represents a number, such as BIT1)

3 bytes

parameter (param1 - param4) 2 bytes

All relational and mathematical operators 1 byte

I/O Application Programming Manual

IV 150913

150913 V

Appendix C
Terms Used in This Manual

application The programs you create for your customers are referred to as “applications” (or
application programs) in this manual.

bit, byte A byte is made up of 8 bits. A bit is a 0 or a 1. The pattern of bits determines what
data is stored in the byte. I/O applications control a hardware device by sending it a
byte of data. Each bit of the byte has a specific purpose. See Section 2.4.1 for more
information.

case-sensitive The 4820 I/O application programming language is case-sensitive. This means that
if you use a capital letter when a lowercase is required (or vice versa), you will
receive a syntax error. See Section 2.3.10 for more information.

command statement Tells the system what to do. The I/O application programming language has two
types of commands: assignment commands (temp1 = 1) and genevt commands
(genevt0 (9999XXXX)).

comments Any text surrounded by /* */ is a comment. A comment is an explanation of a state-
ment. Words surrounded by comment markers have no effect on the application.
See Section 2.3.9 for more information.

compile, compiler When you compile your application (from the script editor screen), you are running
a syntax check (that is, verifying that your script has no errors). The compiler is a
part of the I/O application programming language.

conditional statement A statement beginning with “if” or “if else” that tells the application what events to
look for.

constant A number that will not change. For example, in the statement
temp1 + 1, “1” is a constant. “BIT1” is a named constant. It represents a number
that will not change.

decompile Occurs when an application is uploaded. Variables and named constants are
returned to their numeric values. Comments are lost. See Appendix A for more
information.

else Tells the application what to do if a condition is not met.

eventcode Number that represents an event that occurs on the system. See Section 5.2.

generate only Eventcodes identified as “generate only” are used only with the genevt command.
See Section 5.

genevt command Tells the system to generate an event.

if Opens a conditional statement.

logical operators The operators OR, AND, XOR can be used in I/O applications. See Section 2.3.2
for more information.

parameter An additional piece of data that is associated with an event. See Section 5.

receive and generate Eventcodes identified as “receive and generate” can be used to generate events with
the genevt command and in conditional statements. See Section 5.

receive only Eventcodes identified as “receive and generate” can be used only in conditional
statements. See Section 5.

I/O Application Programming Manual

VI 150913

script The complete set of commands that runs an application.

script editor The 5580 contains a simple word processor for creating applications. See Section 3.

syntax The way in which statements are constructed in order to be understood by the com-
piler.

syntax errors If you create a statement that is not understood by the compiler, you will receive a
syntax error. See Section 3.5.1 for examples of syntax errors.

templates When you create an application using the System Template, the UL required script
for controlling bells will be the default. If your installation is not UL, you can delete
the default script. See Section 3.1.1.

You can also save an account as a template so that a script you have created will be
available to other accounts. If you need more information about how to save an
account as a template, refer to the Model 5580 Upload-Download Installation and
Operation Manual (P/N 150925).

variable Temporary storage location.

word Two bytes

